Add like
Add dislike
Add to saved papers

Molecular and functional characterization of ShNAC1, an NAC transcription factor from Solanum habrochaites.

NAC transcription factors (TFs) are important regulators of plant adaptation to abiotic stress. In this study, we functionally characterized an NAC TF, ShNAC1, from Solanum habrochaites. ShNAC1 was up-regulated by drought, cold, and salt stresses, and it displayed lower expression at the late stage of stress treatments than its orthologous gene in S. lycopersicum. Overexpression of ShNAC1 in tomato resulted in reduced cold, drought, and salt tolerance. Additionally, ShNAC1 displayed the highest expression in senescent leaf, and overexpressing ShNAC1 accelerated salt- and dark-induced leaf senescence. ShNAC1 was located in the nucleus without transactivation activity. RNA-seq analysis revealed that 81% (190 out of 234) differentially-expressed genes (DEGs) showed down-regulation in the transgenic line L2 compared with wild-type, suggesting that ShNAC1 may function as a transcriptional repressor. Among these down-regulated DEGs, many were involved in stress responses, such as SlHKT1;1, SlMAPKKK59, SlJA2, SlTIL, SlALDH2B1, etc. Noticeably, one ACS gene and three ACO genes involved in ethylene biosynthesis were up-regulated, while seven ERF genes in the ethylene signal transduction pathway were down-regulated in the transgenic lines, respectively. Our results suggested that ShNAC1 negatively regulates tolerance to abiotic stress in tomato probably by modulating the ethylene biosynthesis and signal transduction pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app