Add like
Add dislike
Add to saved papers

The relationship between alkaline phosphatase and bone alkaline phosphatase activity and the growth hormone/insulin-like growth factor-1 axis and vitamin D status in children with growth hormone deficiency.

The relationships between bone turnover, the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and vitamin D are complex, but still not fully explained. The GH/IGF-1 axis and vitamin D can mutually modulate each other's metabolism and influence the activation of cell proliferation, maturation, and mineralization as well as bone resorption. The aim of this study was to evaluate the reciprocal associations between bone formation markers [alkaline phosphatase (ALP), bone alkaline phosphatase (BALP)], the GH/IGF-1 axis and 25-hydroxyvitamin D [25(OH)D] in children with growth hormone deficiency at baseline and during recombinant human growth hormone (rhGH) therapy. ALP, BALP, 25(OH)D and IGF-1 levels were evaluated in 53 patients included in this prospective three-year study. ALP, BALP and IGF-1 increased during rhGH therapy. Baseline ALP activity correlated positively with baseline height velocity (HV). ALP and BALP activity at 12 months correlated positively with HV in the first year of therapy. We found positive correlations between ALP and IGF-1 at baseline and during the first year of therapy, between BALP activity at 12 months and rhGH dose in the first year of therapy, and between doses of cholecalciferol in the first year of rhGH therapy and early changes in BALP activity during rhGH therapy. Our results indicate that vitamin D supplementation enhances the effect of rhGH on bone formation process, which could improve the effects of rhGH therapy. ALP and BALP activity are useful in the early prediction of the effects of rhGH therapy, but their utility as long-term predictors seemed insufficient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app