Add like
Add dislike
Add to saved papers

Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers.

The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app