Add like
Add dislike
Add to saved papers

Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms.

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is the most serious disease affecting the yield of the agriculturally and economically important crop Brassica napus (rapeseed). In this study, Oryza sativa polygalacturonase-inhibiting protein 2 (OsPGIP2) was found to effectively enhanced rapeseed immunity against S. sclerotiorum infection. Leaf extracts of B. napus plants overexpressing OsPGIP2 showed enhanced S. sclerotiorum resistance by delaying pathogen infection. The constitutive expression of OsPGIP2 in rapeseed plants provided a rapid and effective defense response, which included the production of reactive oxygen species, interactions with S. sclerotiorum polygalacturonases (SsPG3 and SsPG6), and effects on the expression of defense genes. RNA sequencing analysis revealed that the pathogen induced many differentially expressed genes associated with pathogen recognition, redox homeostasis, mitogen-activated protein kinase signaling cascades, hormone signaling pathways, pathogen-/defense-related genes, and cell wall-related genes. The overexpression of OsPGIP2 also led to constitutively increased cell wall cellulose and hemicellulose contents in stems without compromising seed quality. The results demonstrate that OsPGIP2 plays a major role in rapeseed defense mechanisms, and we propose a model for OsPGIP2-conferred resistance to S. sclerotiorum in these plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app