Add like
Add dislike
Add to saved papers

Dietary fish oil ameliorates adipose tissue dysfunction in insulin-resistant rats fed a sucrose-rich diet improving oxidative stress, peroxisome proliferator-activated receptor γ and uncoupling protein 2.

Food & Function 2018 April 26
This work aims to assess the possible beneficial effects of dietary fish oil (FO) on the pre-existing adipose tissue dysfunction through the improvement or reversion of the mechanisms underlying oxidative stress and pro-inflammatory cytokines in dyslipemic insulin-resistant rats. Wistar rats were fed a sucrose rich diet (SRD) for 6 months. After that half of the animals continued with the SRD until month 8 while in the other half corn oil was replaced by FO for 2 months (SRD + FO). A reference group consumed a control diet all the time. In an epididymal fat pad, we analyzed antioxidant and oxidant enzyme activities, ROS content, glutathione redox state, the protein level of peroxisome proliferator-activated receptor gamma (PPARγ) and the expression and protein levels of uncoupling protein 2 (UCP2) as well as oxidative stress biomarkers and TNF-α and IL-6 plasma levels. Besides these, insulin sensitivity and the composition of fatty acid phospholipids of adipose tissue were measured. Compared with the SRD the SRD + FO fed group showed a decrease of fat pad weight and the antioxidant and oxidant enzyme activities and ROS content returned to control values along with normal plasma TNF-α and IL-6 levels. FO normalized both the decrease of PPARγ protein and the increase of protein and expression of UCP2. Furthermore, FO increased the n-3/n-6 fatty acid ratio in the adipose tissue phospholipids and normalized dyslipidemia and insulin resistance. Finally, these findings reinforce the view that dietary FO may exert a beneficial effect in ameliorating the dyslipidemia and insulin resistance in this animal model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app