Add like
Add dislike
Add to saved papers

A mechanistic approach to explore the neuroprotective potential of zonisamide in seizures.

BACKGROUND: Epilepsy, a disease of the brain, is one of the most common serious neurological conditions. It is associated with a group of processes which alter energy metabolism, interrupt cellular ionic homeostasis, cause receptor dysfunction, activate inflammatory cascade, alter neurotransmitter uptake and result in neuronal damage. The increasing knowledge and understanding about the basis of neuronal changes in epilepsy lead to investigate the mechanistic pathway of neuroprotective agents in epilepsy. With this background, the present study is designed to reveal the molecular and biochemical mechanisms involved in the neuroprotective potential of zonisamide in epilepsy.

METHODS: Seizure-induced neuronal damage was produced by maximal electroshock seizures in animals. The oxidative stress and neuroinflammatory and apoptotic markers were assessed in the brain tissue of animals.

RESULTS AND DISCUSSION: The present findings revealed that zonisamide treatment prevented the development of seizures in animals. Seizures-induced free radicals production and neuroinflammation were markedly ameliorated by zonisamide administration. In conclusion, the present study demonstrated the mechanisms behind the strong neuroprotective potential of zonisamide against seizures by attenuating the oxidative stress, inflammatory cascade and neuronal death associated with progression of seizures. It can be further developed as a neuroprotective agent for epilepsy and other neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app