Add like
Add dislike
Add to saved papers

A novel, semi-synthetic diterpenoid 16(R and S)-phenylamino-cleroda-3,13(14), Z-dien-15,16 olide (PGEA-AN) inhibits the growth and cell survival of human neuroblastoma cell line SH-SY5Y by modulating P53 pathway.

Neuroblastoma being the most common extracranial pediatric solid tumor accounts for 15% of overall cancer-related childhood mortalities. Resistance to chemotherapeutic drugs is one of the limiting factors for positive prognosis for neuroblastoma. Therefore, there is always a need for developing new therapeutic moieties which can become a future prospect of neuroblastoma therapy. Terpenoids being the largest natural compounds have demonstrated many biological activities including anticancer activity. Keeping in mind the role of terpenoids in biological system, we aimed to identify novel semi-synthetic terpenoid derived from cleroda diterpene, 16-oxo-cleroda-3,13(14)E-diene-15-oic acid (1) as a potential anticancer moiety against neuroblastoma. We choose γ-amino γ-lactone (PGEA-AN, 2) of 1 to study further because it exhibited the most potent cytotoxic activity in preliminary screening. In comparison to cisplatin, PGEA-AN significantly decreased the nuclear area factor which suggest the potential apoptosis as cause of cell death. PGEA-AN demonstrated a significant increase in the percent of late apoptosis and necrotic cell death at 48-h treatment with IC50 dose. PGEA-AN significantly increased expression of P53 and BAX with no or little effect on BCL2 shifting BAX/BCL2 towards BAX promoting apoptosis. Increment in mitochondrial permeability supports P53 pathway involvement. Despite similarity in actions with cisplatin, PGEA-AN has found to have no effect on renal system. Based on these observations, we suggest that PGEA-AN modulates P53 system which further leads to the death of the neuroblastoma cells with no effect on renal system in vivo owing it to be a future prospect for development of anticancer moiety against neuroblastoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app