Add like
Add dislike
Add to saved papers

Stochastic Dynamics of Eukaryotic Flagellar Growth.

We study the dynamics of flagellar growth in eukaryotes where intraflagellar transporters (IFT) play a crucial role. First we investigate a stochastic version of the original balance point model where a constant number of IFT particles move up and down the flagellum. The detailed model is a discrete event vector-valued Markov process occurring in continuous time. First the detailed stochastic model is compared and contrasted with a simple scalar ordinary differential equation (ODE) model of flagellar growth. Numerical simulations reveal that the steady-state mean value of the stochastic model is well approximated by the ODE model. Then we derive a scalar stochastic differential equation (SDE) as a first approximation and obtain a "small noise" approximation showing flagellar length to be Gaussian with mean and variance governed by simple ODEs. The accuracy of the small noise model is compared favorably with the numerical simulation results of the detailed model. Secondly, we derive a revised SDE for flagellar length following the revised balance point model proposed in 2009 in which IFT particles move in trains instead of in isolation. Small noise approximation of the revised SDE yields the same approximate Gaussian distribution for the flagellar length as the SDE corresponding to the original balance point model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app