Add like
Add dislike
Add to saved papers

A simple and ultrasensitive fluorescence assay for single-nucleotide polymorphism.

In this report, a simple, label-free and highly efficient nucleic acid amplification technique is developed for ultrasensitive detection of single-nucleotide polymorphism (SNP). Briefly, a designed padlock probe is first circularized by a DNA ligase when it perfectly complements to a mutant gene. Then, the mutant gene functions as a primer to initiate branched rolling circle amplification reaction (BRCA), generating a large number of branched DNA strands and a lot of pyrophosphate molecules which is equivalent to the number of nucleotides consumed. With the addition of a terpyridine-Zn(II) complex, pyrophosphate molecules can be sensitively detected owing to the formation of a fluorescent terpyridine-Zn(II)-pyrophosphate complex. The fluorescence intensity is directly associated with the content of the mutant gene in a sample solution. On the other hand, the circulation of the padlock probe is prohibited when it hybridizes with the wild-type gene. In this assay, the accumulative nature of the BRCA process produces a detection limit of 0.1 pM and an excellent selectivity factor of 1000 toward SNP. As little as 0.1% mutant in the wild-type gene can be successfully detected. The simple procedure, high sensitivity, and high selectivity of this assay offer a potentially viable alternative for routine SNP analysis. Graphical abstract A simple and label-free fluorescence assay for SNP detection by coupling BRCA with selective fluorescence detection of pyrophosphate using the terpyridine-Zn(II) complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app