Add like
Add dislike
Add to saved papers

Synergetic enhancement of the electronic/ionic conductivity of a Li-ion battery by fabrication of a carbon-coated nanoporous SnO x Sb alloy anode.

Nanoscale 2018 April 27
The major obstacles which prohibit the practical applications of alloy-type anodes include insufficient ionic/electronic transportations and structural failures. Herein, we report the fabrication of a carbon-coated nanoporous SnSb alloy (NP-SnOxSb@C) and its application as an anode in Li-ion batteries (LIBs). The as-fabricated NP-SnOxSb@C is characterized by SEM and TEM and demonstrates a bi-continuous nanoporous structure. Amorphous carbon is found to be uniformly coated on the alloy surface. When used as an anode for LIB, NP-SnOxSb@C displays a high capacity (850 mA h g-1 after the 50th cycle) and good rate performance of 664 mA h g-1 at 2000 mA g-1. The improved electrochemical performance is mainly due to a high Li+ diffusion coefficient and low charge transfer resistance between the nanoporous structure and conductive carbon layer. The facile material fabrication process and good electrochemical performance enable the practical utilization of this anode for high-performance LIBs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app