Add like
Add dislike
Add to saved papers

Degradation of thin-film lithium batteries characterised by improved potentiometric measurement of entropy change.

The degradation phenomena of thin-film solid state batteries caused by cycling at a high cut-off voltage and different temperatures were studied using an improved potentiometric measurement of entropy change combined with electrochemical impedance analysis and incremental capacity analysis. Entropy profiling is demonstrated as a viable non-destructive technique for solid state batteries that is sensitive to structural changes in electrodes during galvanostatic cycling, and is complementary to other techniques for studying degradation. The characteristic peaks and valleys in the entropy profile as a function of the state-of-charge could be closely correlated to theories of phase transitions in the cathode material. This technique is therefore a useful technique to help understand and diagnose the degradation mechanism, and specify the state-of-health in a promising new battery technology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app