Add like
Add dislike
Add to saved papers

miR-33 inhibition attenuates the effect of liver X receptor agonist T0901317 on expression of liver X receptor alpha in mice liver.

ARYA Atherosclerosis 2017 November
BACKGROUND: microRNAs play pivotal roles in metabolism and other aspects of cell biology. microRNA-33 and liver X receptor (LXR) affect lipid metabolism and cholesterol trafficking. In this study, we evaluated effects of co-administration of miR-33 inhibitor and LXR activator on LXR-α and adenosine triphosphate-binding cassette transporter A1 (ABCA1) expression in mice liver.

METHODS: Twenty-four mice were randomly allocated into four groups (n = 6). Group 1 mice received standard chow diet without any treatment, group 2 received 30 mg/kg/48 hour LXR agonist (T0901317), group 3 received 1 mg/kg/48 hour in vivo locked nucleic acids (LNA) anti-miR-33 and group 4 received both T0901317 and in vivo LNA anti-miR-33. All treatments were administrated through intraperitoneal injection (IP). After 7 days and at the end of the study, mice were sacrificed, liver tissues were excised and blood samples were collected. LXR-α and ABCA1 genes and protein expression were quantified by real-time polymerase chain reaction (PCR) and western blotting, respectively.

RESULTS: LXR activation caused LXR-α and ABCA1 mRNA (P < 0.050) and protein elevation as compared to control (P < 0.001). miR-33 inhibition attenuates T0901317 effect on LXR-α expression in group IV. Co-administration of T0901317 and anti-miR-33 remarkably elevated high-density lipoprotein cholesterol (HDL-C) levels, compared to control group (P = 0.001). Separate administration of T0901317 and anti-miR-33 also elevated HDL-C levels (P < 0.010).

CONCLUSION: Co-administration of T0901317 and anti-miR-33 can be considered as a good therapeutic alternative for atherosclerosis because miR-33 inhibition reduced lipogenic effects of LXR-α activator and also helps LXR-α agonist to increase reverse cholesterol transport (RCT) and also HDL-C as antiatherogenic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app