Add like
Add dislike
Add to saved papers

The Topological Properties of Stimuli Influence Fear Generalization and Extinction in Humans.

Fear generalization is an etiologically significant indicator of anxiety disorders, and understanding how to inhibit it is important in their treatment. Prior studies have found that reducing fear generalization using a generalization stimulus (GS) is ineffective in removing a conditioned fear that incorporates local features, and that topological properties appear to play a comparatively more significant role in the processes of perception and categorization. Our study utilized a conditioned-fear generalization design to examine whether the topological properties of stimuli influence the generalization and return of fear. Fear was indexed using online expectancy ratings and skin conductance responses (SCRs). The study's 52 participants were divided into three groups: Group 1, conditioned danger cue (CS+) extinction; Group 2, extinction of one GS; Group 3, extinction of three GSs. We found that the three groups acquired conditioned fear at the same level. In the generalization and extinction phase, fear was transferred to the GS with the same topological properties as CS+, and gradual decreases in both shock expectancy and SCRs over non-reinforced extinction trials were observed. In the test phase, participants' online expectancy ratings indicated that fear did not return in Group 1, but did return in Groups 2 and 3. All three groups demonstrated successful GS fear extinction, but only Group 1 did not show a return of fear for CS+. Regarding SCRs results, none of the groups demonstrated a return of fear, suggesting that utilization of topological properties successfully reduced the return of conditioned fear. Our results indicate that, in clinical settings, using GS with topological equivalence to CS+ might offer a potential method with which to extinct conditioned fear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app