JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

T cell-induced CSF1 promotes melanoma resistance to PD1 blockade.

Colony-stimulating factor 1 (CSF1) is a key regulator of monocyte/macrophage differentiation that sustains the protumorigenic functions of tumor-associated macrophages (TAMs). We show that CSF1 is expressed in human melanoma, and patients with metastatic melanoma have increased CSF1 in blood compared to healthy subjects. In tumors, CSF1 expression correlated with the abundance of CD8+ T cells and CD163+ TAMs. Human melanoma cell lines consistently produced CSF1 after exposure to melanoma-specific CD8+ T cells or T cell-derived cytokines in vitro, reflecting a broadly conserved mechanism of CSF1 induction by activated CD8+ T cells. Mining of publicly available transcriptomic data sets suggested co-enrichment of CD8+ T cells with CSF1 or various TAM-specific markers in human melanoma, which was associated with nonresponsiveness to programmed cell death protein 1 (PD1) checkpoint blockade in a smaller patient cohort. Combination of anti-PD1 and anti-CSF1 receptor (CSF1R) antibodies induced the regression of BRAF V600E -driven, transplant mouse melanomas, a result that was dependent on the effective elimination of TAMs. Collectively, these data implicate CSF1 induction as a CD8+ T cell-dependent adaptive resistance mechanism and show that simultaneous CSF1R targeting may be beneficial in melanomas refractory to immune checkpoint blockade and, possibly, other T cell-based therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app