Add like
Add dislike
Add to saved papers

Microwave-Assisted Oxalic Acid Pretreatment for the Enhancing of Enzyme Hydrolysis in the Production of Xylose and Arabinose from Bagasse.

In this study, highly-efficient hydrolysis of bagasse into xylose and arabinose sugars (C5 sugars) was developed by microwave-assisted oxalic acid pretreatment under mild reaction conditions. The effects of acid and hydrolysis conditions on the C5 sugar yields were discussed. The results showed that oxalic acid performed better than hydrochloric acid and maleic acid, and was a promising alternative to sulfuric acid for xylose production at the same acid concentration. The maximum yields of xylose (95.7%) and arabinose (91.5%) were achieved via the microwave-assisted oxalic acid pretreatment (120 °C, 10 min, 0.4 mol/L, solid-liquid ratio of 1:50 g/mL), indicating that almost all xylan-type hemicelluloses were released from the cell wall and hydrolyzed into C5 sugars. After pretreatment, more than 90% of the cellulose in the residual bagasse was converted to glucose (92.2%) by enzymatic hydrolysis. This approach could realize the highly-efficient hydrolysis of xylan from bagasse into C5 sugars, which would enhance the enzyme hydrolysis of treated bagasse into glucose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app