Add like
Add dislike
Add to saved papers

An Acarological Risk Model Predicting the Density and Distribution of Host-Seeking Ixodes scapularis Nymphs in Minnesota.

Ixodes scapularis is the vector of at least seven human pathogens in Minnesota, two of which are known to cause Lyme disease ( Borrelia burgdorferi sensu stricto and Borrelia mayonii ). In Minnesota, the statewide incidence of Lyme disease and other I. scapularis -borne diseases and the geographic extent over which cases have been reported have both increased substantially over the last two decades. These changes correspond with an expanding distribution of I. scapularis over a similar time frame. Because the risk of exposure to I. scapularis -borne pathogens is likely related to the number of ticks encountered, we developed an acarological risk model predicting the density of host-seeking I. scapularis nymphs (DON) in Minnesota. The model was informed by sampling 81 sites located in 42 counties in Minnesota. Two main foci were predicted by the model to support elevated densities of host-seeking I. scapularis nymphs, which included the seven-county Minneapolis-St. Paul metropolitan area and counties in northern Minnesota, including Lake of the Woods and Koochiching counties. There was substantial heterogeneity observed in predicted DON across the state at the county scale; however, counties classified as high risk for I. scapularis -borne diseases and counties with known established populations of I. scapularis had the highest proportion of the county predicted as suitable for host-seeking nymphs (≥ 0.13 nymphs/100 m2 ). The model provides insight into areas of potential I. scapularis population expansion and identifies focal areas of predicted suitable habitat within counties where the incidence of I. scapularis -borne diseases has been historically low.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app