Add like
Add dislike
Add to saved papers

A new role for mast cells as scavengers for clearance of erythrocytes damaged due to oxidative stress.

Anemia, inflammation, and oxidative stress are interconnected. Erythrocytes are continuously exposed to oxidative stress, normally and during inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells affect anemia. In the present study, a direct role for mast cells in clearance of erythrocytes was explored. We show, for the first time, direct phagocytosis of opsonized as well as oxidatively damaged erythrocytes in vitro by mast cell lines, bone marrow derived mast cells (BMMCs) and in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significantly higher uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Our study provides important evidence for a scavenging role for mast cells in anemia due to inflammation and oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app