Add like
Add dislike
Add to saved papers

Fingerprinting Non-Terran Biosignatures.

Astrobiology 2018 July
Most strategies for life detection rely upon finding features known to be associated with terran life, such as particular classes of molecules. But life may be vastly different on other planets and moons, particularly as we expand our efforts to explore ocean worlds like Europa and Enceladus. We propose a new concept for life detection that harnesses the power of DNA sequencing to yield intricate informatics fingerprints, even for life that is not nucleic acid-based. The concept is based on the fact that folded nucleic acid structures (aptamers) have been shown to be capable of binding a wide variety of compounds, whether inorganic, organic, or polymeric, and irrespective of being from a biotic or abiotic source. Each nucleic acid sequence can be thought of as a code, and a combination of codes as a "fingerprint." Over multiple analytes, the "fingerprint" of a non-terran sample can be analyzed by chemometric protocols to provide a classifier of molecular patterns and complexity. Ultimately the chemometric fingerprints of living systems, which may differ significantly from nonliving systems, could provide an empirical, agnostic means of detecting life. Because nucleic acids are exponentially amplified by the polymerase chain reaction, even very small input signals could be translated into a robust readable output. The derived sequences could be identified by a small, portable sequencing device or by capture and optical imaging on a DNA microarray. Without presupposing any particular molecular framework, this agnostic approach to life detection could be used from Mars to the far reaches of the Solar System, all within the framework of an instrument drawing little heat and power. Key Words: Agnostic biosignatures-Astrobiology-Chemometrics-DNA sequencing-Life detection-Proximity ligation assay. Astrobiology 18, 915-922.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app