Add like
Add dislike
Add to saved papers

Multiple e-Pharmacophore modeling to identify a single molecule that could target both streptomycin and paromomycin binding sites for 30S ribosomal subunit inhibition.

The bacterial ribosome is an established target for anti-bacterial therapy since decades. Several inhibitors have already been developed targeting both defined subunits (50S and 30S) of the ribosome. Aminoglycosides and tetracyclines are two classes of antibiotics that bind to the 30S ribosomal subunit. These inhibitors can target multiple active sites on ribosome that have a complex structure. To screen putative inhibitors against 30S subunit of the ribosome, the crystal structures in complex with various known inhibitors were analyzed using pharmacophore modeling approach. Multiple active sites were considered for building energy-based three-dimensional (3D) pharmacophore models. The generated models were validated using enrichment factor on decoy data-set. Virtual screening was performed using the developed 3D pharmacophore models and molecular interaction towards the 30S ribosomal unit was analyzed using the hits obtained for each pharmacophore model. The hits that were common to both streptomycin and paromomycin binding sites were identified. Further, to predict the activity of these hits a robust 2D-QSAR model with good predictive ability was developed using 16 streptomycin analogs. Hence, the developed models were able to identify novel inhibitors that are capable of binding to multiple active sites present on 30S ribosomal subunit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app