Add like
Add dislike
Add to saved papers

A novel role of HIF-1α/PROX-1/LYVE-1 axis on tissue regeneration after renal ischaemia/reperfusion in mice.

CONTEXT: Renal ischaemia reperfusion (I/R) is a common clinical condition with a high morbidity and mortality rate. To date, I/R-induced renal injury remains an ineffective treatment.

OBJECTIVE: We hypothesis that angiogenesis and lymphangiogenesis markers, prospero homeobox-1 (PROX-1) and lymphatic endothelial hyaluronan receptor-1 (LYVE-1), are critical during I/R.

MATERIAL AND METHODS: Kunming mice were subjected to I/R and observed for the following eight consecutive days. Pathology analysis and protein distribution were detected by H&E staining, immunohistochemistry and immunofluorescence confocal analysis.

RESULTS: After I/R treatment, renal pathology was changed. HIF-1α was induced in the early stage and colocalisation with PROX-1 mainly in the renal tubular region, whereas PROX-1 and LYVE-1 were colocalised in the glomerulus of the endothelial region.

CONCLUSIONS: In this study, we revealed HIF-1α/PROX-1/LVYE-1 axis dynamic changes in different regions after I/R and demonstrated for the first time it activates during I/R repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app