Add like
Add dislike
Add to saved papers

The effects of adenine nucleotide perfusion on interstitial adenosine production in rat skeletal muscle.

The purpose of the present study was to utilize the microdialysis technique in rat skeletal muscle to perfuse varying concentrations of AMP, ADP, and ATP into the interstitium to examine the effects that these adenine nucleotides have on the production of adenosine in the interstitial space. Interstitial adenosine production appears to be related to the type (ATP, ADP, or AMP) and concentration (2-60 μmol/L) of the adenine nucleotide perfused. Interstitial adenosine levels increased (P < 0.05) from baseline (0.18 ± 0.02 and 0.22 ± 0.02 μmol/L) to 0.23 ± 0.02 and 0.41 ± 0.05 μmol/L following 5 and 30 μmol/L AMP perfusion, respectively. Similarly, perfusion with 30 μmol/L ADP and 30, 40, and 60 μmol/L ATP resulted in an increase (P < 0.05) in interstitial adenosine concentration from baseline (0.25 ± 0.02, 0.26 ± 0.02, 0.19 ± 0.03, and 0.14 ± 0.02 μmol/L) to 0.30 ± 0.02, 0.32 ± 0.02, 0.36 ± 0.04, and 0.33 ± 0.04 μmol/L, respectively. Interestingly, the most prominent increase in interstitial adenosine production occurred during the perfusion of 60 μmol/L ATP (126% increase from baseline). These data strongly suggest that interstitial ATP may play a more potent role in stimulating interstitial adenosine production as compared with ADP or AMP. In addition, interstitial adenosine production can occur independent of muscle contraction (voluntary or involuntary) or hypoxia when adequate concentrations of adenine nucleotides are available.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app