Add like
Add dislike
Add to saved papers

In Vivo Imaging of the Intra- and Extracellular Redox Status in Rat Stomach with Indomethacin-Induced Gastric Ulcers Using Overhauser-Enhanced Magnetic Resonance Imaging.

AIMS: Repeated use of nonsteroidal anti-inflammatory drugs can induce changes in the redox status, including production of reactive oxygen species (ROS), but the specific details of these changes remain unknown. Overhauser-enhanced magnetic resonance imaging (OMRI) has been used in vivo to monitor the redox status in several diseases and map tissue oxygen concentrations. We monitored the intra- and extracellular redox status in the stomach of rats with indomethacin-induced gastric ulcers using OMRI and investigated the relationship with gastric mucosal damage.

RESULTS: One hour after oral administration of indomethacin (30 mg/kg), OMRI measurements in the stomach were made following nitroxyl probe administration. OMRI with the membrane-permeable nitroxyl probe, 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPOL), demonstrated a redox change toward oxidation, which was reversed by a membrane-permeable antioxidant. Conversely, imaging with the impermeable probe, 4-trimethylammonium-2,2,6,6-tetramethyl-piperidine-1-oxyl (CAT-1), demonstrated little redox change. Redox imbalance imaging of a live rat stomach with indomethacin-induced gastric ulcers was produced by dual imaging of 15 N-labeled TEMPOL and 14 N-labeled CAT-1, in addition to imaging with another membrane-permeable 15 N-labeled probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL), and 14 N-labeled CAT-1. Pretreatment with MC-PROXYL suppressed gastric mucosal damage, whereas pretreatment with CAT-1 did not suppress ulcer formation.

INNOVATION: OMRI combined with a dual probe is a less invasive imaging technique for evaluation of intracellular ROS production contributing to the formation of gastric ulcers in the stomach of indomethacin-treated rats, which cannot be done with other methods.

CONCLUSION: This method may be a very powerful tool for characterizing the pathogenesis of various diseases and may have medical applications. Antioxid. Redox Signal. 00, 000-000.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app