Add like
Add dislike
Add to saved papers

Up-conversion monodispersed spheres of NaYF 4 :Yb 3+ /Er 3+ : green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn 2+ doping.

Submicron sized, monodispersed spheres of Mn2+, Yb3+/Er3+ and Mn2+/Yb3+/Er3+ doped α-NaYF4 were easily autoclaved from mixed solutions of the component nitrates and ammonium fluoride (NH4F), in the presence of EDTA-2Na. Detailed characterizations of the resultant phosphors were obtained using XRD, Raman spectroscopy, FE-SEM, HR-TEM, STEM, PLE/PL spectroscopy, and fluorescence decay analysis. Finer structure and better crystal perfection was observed at a higher calcination temperature, and the spherical shape and excellent dispersion of the original particles was retained at temperatures up to 600 °C. Under the 980 nm infrared excitation, the Yb3+/Er3+-doped sample (calcined at 400 °C) exhibits a stronger green emission centered at ∼524 nm (2H11/2 → 4I15/2 transition of Er3+) and a weaker red emission centered at ∼657 nm (4F9/2 → 4I15/2 transition of Er3+). A 200 °C increase in the temperature from 400 °C to 600 °C resulted in the dominant red emission originating from the 4F9/2 → 4I15/2 transition of Er3+, instead of the previously dominant green one. Mn2+ doping induced a remarkable more enhanced intensity at ∼657 nm and ∼667 nm (red emission area) than that at ∼524 nm and ∼546 nm (green emission area), because of the non-radiative energy transfer between Mn2+ and Er3+. However, a poor thermal stability was induced by Mn2+ doping. The observed upconversion luminescence of the samples calcined at 400 °C and 600 °C followed the two photon process and the four photon process, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app