Add like
Add dislike
Add to saved papers

Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid.

Analyst 2018 April 31
Glycocholic acid (GCA) has been identified as a novel selective and sensitive biomarker for hepatocellular carcinoma (HCC). In this work, a recombinant antibody, scFv-G11, which was shown previously to have selective reactivity for GCA, was labeled with biotin using a chemical and an enzymatic method, respectively. The enzymatic method proved superior giving sensitive scFv-biotin preparations. Based on biotinylated scFv against GCA and a biotin-streptavidin system for signal amplification, an indirect competitive biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) has been established for the sensitive and rapid detection of GCA. Several physiochemical factors that influenced assay performance, such as organic cosolvent, ionic strength, and pH, were studied. Under the optimized conditions, the indirect competitive BA-ELISA based on the obtained biotinylated scFv antibodies indicated that the average concentration required for 50% inhibition of binding (IC50) and the limit of detection (LOD) for GCA were 0.42 μg mL-1 and 0.07 μg mL-1, respectively, and the linear response range extended from 0.14 to 1.24 μg mL-1. Cross-reactivity of biotinylated scFv antibodies with various bile acid analogues was below 1.89%, except for taurocholic acid. The recoveries of GCA from urine samples via this indirect competitive BA-ELISA ranged from 108.3% to 131.5%, and correlated well with liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS), which indicated the accuracy and reliability of biotinylated scFv-based ELISA in the detection of GCA in urine samples. This study also demonstrates the broad utility of scFv for the development of highly sensitive immunoassays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app