Add like
Add dislike
Add to saved papers

Chiral polymorphism in the self-assemblies of achiral molecules induced by multiple hydrogen bonds.

Owing to a wide range of applications within the areas such as chiral sensors, enantiomeric resolution, and asymmetric catalysis, understanding chiral adsorption phenomena at the interface is thereby of great importance. In particular, the role of multiple hydrogen bonds in inducing chiral diversiform morphologies has never been systematically investigated. Herein, by delicate control of the volume ratio of 1-octanoic acid and 1-octanol as the mixed solvent, a series of self-assembled nanostructures of 2-hydroxyl-7-pentadecyloxy-fluorenone (HPF) were sequentially fabricated, including the achiral densely-packed pattern, the chiral "6-2" pattern, the chiral alternate pattern, and the chiral double-rosette pattern. Eventually, those patterns would evolve into an achiral and thermodynamically favored zigzag pattern. Based on DFT calculations, we demonstrate that the stabilities of diversiform morphologies originate from different hydrogen bonding and molecular packing densities. In addition, quantum theory of atoms in molecule (QTAIM) analysis is further applied to interpret the nature of these hydrogen bonds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app