Add like
Add dislike
Add to saved papers

A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries.

Chemical Science 2018 January 22
Li-S batteries have attracted enormous interest due to their potentially high energy density, non-toxicity and the low cost of sulfur. The main challenges of sulfur cathodes are the short cycling life and limited power density caused by the low conductivity of sulfur and dissolution of Li polysulfides. Here we design a new double-hierarchical sulfur host to address these problems. Hierarchical carbon spheres (HCSs), constructed from building blocks of hollow carbon nanobubbles for loading sulfur, are sealed within a thin, polar MoS2 coating composed of ultrathin nanosheets. Experimental and theoretical studies show a strong absorption of the MoS2 nanoshell to polysulfides, and the excellent stability of the MoS2 nanosheets after the adsorption of polysulfides. Moreover, MoS2 promotes the electrochemical redox kinetics in Li-S batteries. Benefiting from the unique hierarchical, hollow and compositional characteristics of the host, the S/MoS2 @HCS composite electrode shows a high capacity of 1048 mA h g-1 at 0.2C, good rate capacity and long cycling life with a slow capacity decay of 0.06% per cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app