Add like
Add dislike
Add to saved papers

Efficient extraction of uranium from aqueous solution using an amino-functionalized magnetic titanate nanotubes.

In this paper, titanate nanotubes/cobalt ferrite/tetraethylenepentamine (TNTs/CoFe2 O4 /TEPA) adsorbents were prepared for the adsorption of uranium (VI) from the solution. Its morphology was observed by transmission electron microscopy (TEM) and exhibited the uniform well tubular structure. TNTs/CoFe2 O4 /TEPA composites were easily separated from solution by an external magnetic field. The removal of uranium (VI) from aqueous solution (ppm level) and simulated seawater (ppb level) were investigated by the TNTs/CoFe2 O4 /TEPA composites. Batch adsorption experiments were conducted to determine the effect of varying pH, contact time, and reaction temperature. The best fit for uranium (VI) adsorption was obtained with the Langmuir model, and the highest adsorption of TNTs/CoFe2 O4 /TEPA composites reached 509.89 mg-U/g-adsorbent at pH 6. From an investigation of the adsorption by XRD, FTIR and XPS, it is suggested that the surface complexation and cation exchange were the main adsorption mechanism. In addition, TNTs/CoFe2 O4 /TEPA composites maintained good adsorption properties after five sorption-desorption cycles. Therefore, we conclude that the adsorbents are promising materials for the removal of uranium (VI) from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app