Add like
Add dislike
Add to saved papers

Occiput-axis crossing translaminar screw fixation technique using offset connectors: An in vitro biomechanical study.

OBJECTIVE: Fixation with the axis vertebra (C2) using pedicle screws is commonly used to treat an unstable occipitocervical junction; however, it is accompanied by a risk of vertebral artery injury. The occiput-C2 (OC2) crossing translaminar screw fixation technique may avoid this risk, but rod implantation is difficult. Offset connectors can help facilitate this construct. This study aimed to evaluate the stability of a technique for OC2 crossing translaminar screw fixation using offset connectors (C2LAM + OF) in comparison with other methods.

PATIENTS AND METHODS: Six fresh-frozen human cadaveric occipital-cervical spines were tested intact under flexion, extension, lateral bending, and axial rotation. These were then made into a type II odontoid fracture model, instrumented with an occipital plate, and tested in the following modes: C2 bilateral pedicle screws (C2P), a single C2 pedicle screw and bilateral C3 lateral mass screws (C2P + C3M), C2 crossing translaminar screws (C2LAM), and C2LAM + OF. The OC2 range of motion (ROM) for each construct was obtained and compared using a repeated-measures analysis.

RESULTS: The ROM of the C2LAM + OF construct was found not to be significantly different from that of the C2P and C2P + C3M fixations in every direction (p > 0.05). However, the C2LAM + OF construct was superior to the C2LAM construct in axial rotation (p < 0.05).

CONCLUSIONS: OC2 crossing translaminar screw fixation using offset connectors offers similar stability to C2 pedicle screw fixation and is an effective alternative method for treating an unstable occipitocervical junction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app