Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Arginase overexpression and NADPH oxidase stimulation underlie impaired vasodilation induced by advanced glycation end products.

BACKGROUND: Advanced glycation endproducts (AGEs) play a major role in the development of many vascular complications that are mediated by endothelial dysfunction. The present work aimed to investigate the mechanism by which AGEs impair vasodilation.

METHODS: The effect of AGEs on vasodilation induced by acetylcholine or D NONOate was examined by incubating isolated rat aortae with different AGEs concentrations. ACh-induced nitric oxide generation was assessed using the fluorescent probe diaminofluorecein (DAF-FM). The effect of AGEs on expression of mRNA for arginase 2, NADPH oxidase and endothelial nitric oxide synthase (eNOS) were determined by real-time PCR.

RESULTS: One-hour in vitro incubation of rat aortae with AGEs impaired endothelial-dependent vasodilation produced by ACh, while increasing D NONOate-induced vasodilation. Preincubation of aortae with l-ornithine, an arginase 2-inhibitor, prevented the impairment effect induced by AGEs on endothelial-dependent vasodilation. Superoxide scavenging by tempol or NADPH oxidase inhibition by apocynin also blocked the effect of AGEs. AGEs decreased ACh-induced NO production and this was inhibited by both l-ornithine and apocynin. Furthermore, AGEs exposure increased arginase mRNA expression but decreased mRNA expression for eNOS in isolated rat aortae.

CONCLUSION: The present results indicate that AGEs impairs endothelial-dependent vasodilation, and this effect is mediated via arginase overexpression and NADPH oxidase stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app