Add like
Add dislike
Add to saved papers

Investigating in-sewer transformation products formed from synthetic cathinones and phenethylamines using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

Recent studies have demonstrated the role of biofilms on the stability of drug residues in wastewater. These factors are pertinent in wastewater-based epidemiology (WBE) when estimating community-level drug use. However, there is scarce information on the biotransformation of drug residues in the presence of biofilms and the potential use of transformation products (TPs) as biomarkers in WBE. The purpose of this work was to investigate the formation of TPs in sewage reactors in the presence of biofilm mimicking conditions during in-sewer transport. Synthetic cathinones (methylenedioxypyrovalerone, methylone, mephedrone) and phenethylamines (4-methoxy-methamphetamine and 4-methoxyamphetamine) were incubated in individual reactors over a 24h period. Analysis of parent species and TPs was carried out using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToFMS). Identification of TPs was done using suspect and non-target workflows. In total, 18 TPs were detected and identified with reduction of β-keto group, demethylenation, demethylation, and hydroxylation reactions observed for the synthetic cathinones. For the phenethylamines, N- and O-demethylation reactions were identified. Overall, the experiments showed varying stability for the parent species in wastewater in the presence of biofilms. The newly identified isomeric forms of TPs particularly for methylone and mephedrone can be used as potential target biomarkers for WBE studies due to their specificity and detectability within a 24h residence time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app