Add like
Add dislike
Add to saved papers

Translocation of a vesicle through a narrow hole across a membrane.

We study the translocation process of a vesicle through a hole in a solid membrane separating two chambers by using the Onsager principle. By considering the stretching energy of the vesicle and the driving force due to pressure difference, we derive a free energy that shows clearly a decrease in the energy barrier as the pressure difference between two sides of the membrane increases. The difference between the reaction path obtained from the string method and the actual kinetic paths obtained from the Onsager principle is discussed when the friction parameter changes. The translocation time decreases as the pressure difference increases or the initial size of the vesicle decreases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app