Add like
Add dislike
Add to saved papers

In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus.

Antimicrobial peptides (AMPs) have the potential to become valuable antimicrobial drugs in the coming years, since they offer wide spectrum of action, rapid bactericidal activity, and low probability for resistance development in comparison with traditional antibiotics. The search and improvement of methodologies for discovering new AMPs to treat resistant bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa are needed for further development of antimicrobial products. In this work, the software Peptide ID 1.0® was used to find new antimicrobial peptide candidates encrypted in proteins, considering the physicochemical parameters characteristics of AMPs such as positive net charge, hydrophobicity, and sequence length, among others. From the selected protein fragments, new AMPs were designed after conservative and semi-conservative modifications and amidation of the C-terminal region. In vitro studies of the antimicrobial activity of the newly designed peptides showed that two peptides, P3-B and P3-C, were active against P. aeruginosa Escherichia coli and A. baumannii with low minimum inhibitory concentrations. Peptide P3-C was also active against K. pneumoniae and S. aureus. Furthermore, bactericidal activity and information on the possible mechanisms of action are described according to the scanning electron microscopy studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app