JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Circular RNA Protects Dormant Hematopoietic Stem Cells from DNA Sensor cGAS-Mediated Exhaustion.

Immunity 2018 April 18
Disrupting the balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) leads to bone marrow failure or hematologic malignancy. However, how HSCs sustain their quiescent state and avoid type I interferon (IFN)-mediated exhaustion remains elusive. Here we defined a circular RNA that we named cia-cGAS that was highly expressed in the nucleus of long-term (LT)-HSCs. Cia-cGAS deficiency in mice caused elevated expression of type I IFNs in bone marrow and led to decreased numbers of dormant LT-HSCs. Under homeostatic conditions, cia-cGAS bound DNA sensor cGAS in the nucleus to block its synthase activity, thereby protecting dormant LT-HSCs from cGAS-mediated exhaustion. Moreover, cia-cGAS harbored a stronger binding affinity to cGAS than self-DNA did and consequently suppressed cGAS-mediated production of type I IFNs in LT-HSCs. Our findings reveal a mechanism by which cia-cGAS inhibits nuclear cGAS by blocking its enzymatic activity and preventing cGAS from recognizing self-DNA to maintain host homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app