Add like
Add dislike
Add to saved papers

Multilayer bootstrap networks.

Multilayer bootstrap network builds a gradually narrowed multilayer nonlinear network from bottom up for unsupervised nonlinear dimensionality reduction. Each layer of the network is a nonparametric density estimator. It consists of a group of k-centroids clusterings. Each clustering randomly selects data points with randomly selected features as its centroids, and learns a one-hot encoder by one-nearest-neighbor optimization. Geometrically, the nonparametric density estimator at each layer projects the input data space to a uniformly-distributed discrete feature space, where the similarity of two data points in the discrete feature space is measured by the number of the nearest centroids they share in common. The multilayer network gradually reduces the nonlinear variations of data from bottom up by building a vast number of hierarchical trees implicitly on the original data space. Theoretically, the estimation error caused by the nonparametric density estimator is proportional to the correlation between the clusterings, both of which are reduced by the randomization steps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app