Add like
Add dislike
Add to saved papers

Acetylenic fatty acids from Porcelia macrocarpa (Annonaceae) against trypomastigotes of Trypanosoma cruzi: Effect of octadec-9-ynoic acid in plasma membrane electric potential.

Porcelia macrocarpa (Warm.) R. E. Fries (Annonaceae) is an endemic plant in Brazil where its tasty pulp has been eaten fresh. The hexane extract from its flowers was subjected to chromatographic procedures to afford four acetylene derivatives identified as octadec-9-ynoic (stearolic acid - 1), (11E)-octadec-11-en-9-ynoic (santalbic acid - 2), 8-hydroxyoctadec-9,11-diynoic (3) and 8-hydroxyoctadec-17-en-9,11-diynoic (isanolic acid - 4) acids by NMR and HRESIMS. Among tested compounds against trypomastigote forms of T. cruzi, octadec-9-ynoic acid (1) displayed higher potential with IC50  = 27.6 µM and a selectivity index (SI) higher than 7. Compounds 2 and 3 showed IC50 of approximately 60 µM while compound 4 was inactive. The lethal action of the compound 1 was investigated using spectrofluorometric techniques to detect ROS content, plasma membrane permeability and plasma membrane potential by flow cytometry. Compound 1 showed no alteration in the production of ROS of treated trypomastigotes and no alteration of the plasma membrane permeability was observed as detected by the fluorescent probe SYTOX-green after 120 min of incubation. However, by using the potential-sensitive fluorescent probe DiSBAC2 (3), compound 1 caused depolarization of the plasma membrane potential when compared to untreated parasites. Our results demonstrated the anti-T. cruzi effects of compounds 1-3 isolated from flowers of P. macrocarpa and indicated that the lethal effect of compound 1 in T. cruzi could be associated to the plasma membrane disturbance of the parasite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app