Add like
Add dislike
Add to saved papers

The molecular mechanism of two coreceptor binding site antibodies X5 and 17b neutralizing HIV-1: Insights from molecular dynamics simulation.

The coreceptor binding site of gp120 plays an important role in HIV entry into host cell. X5 and 17b are typical coreceptor binding site antibodies with the ability to broadly neutralize HIV. Thus, here, to study the neutralizing mechanism of two antibodies and identify the source of two antibodies with different neutralizing ability, we performed molecular dynamics simulations for the complexes of X5 and 17b with gp120 and CD4. The simulation results indicate X5 and 17b mainly affects CD4 and coreceptor binding sites. Specifically, for CD4 binding site (CD4bs), the binding of antibodies has different effects on CD4bs with and without CD4. However, for coreceptor binding sites, the binding of the antibodies has consistent influence on the region adjacent to loop V3 despite of the simulated systems with or without CD4. The binding of the antibodies enhances the interactions of gp120 region adjacent to loop V3 with other region of gp120, which are unfavorable for conformational rearrangements of the region adjacent to loop V3 and further binding the coreceptor. Additionally, the interactions of loop V3 and bridging sheet with X5 lead to the close motion of loop V3 in X5 bound form, which further influences the rearrangements in gp120.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app