Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cx3cr1-deficiency exacerbates alpha-synuclein-A53T induced neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease.

Glia 2018 August
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons of the substantia nigra and the accumulation of protein aggregates, called Lewy bodies, where the most abundant is alpha-synuclein (α-SYN). Mutations of the gene that codes for α-SYN (SNCA), such as the A53T mutation, and duplications of the gene generate cases of PD with autosomal dominant inheritance. As a result of the association of inflammation with the neurodegeneration of PD, we analyzed whether overexpression of wild-type α-SYN (α-SYNWT ) or mutated α-SYN (α-SYNA53T ) are involved in the neuronal dopaminergic loss and inflammation process, along with the role of the chemokine fractalkine (CX3CL1) and its receptor (CX3CR1). We generated in vivo murine models overexpressing human α-SYNWT or α-SYNA53T in wild type (Cx3cr1+/+ ) or deficient (Cx3cr1-/- ) mice for CX3CR1 using unilateral intracerebral injection of adeno-associated viral vectors. No changes in CX3CL1 levels were observed by immunofluorescence or analysis by qRT-PCR in this model. Interestingly, the expression α-SYNWT induced dopaminergic neuronal death to a similar degree in both genotypes. However, the expression of α-SYNA53T produced an exacerbated neurodegeneration, enhanced in the Cx3cr1-/- mice. This neurodegeneration was accompanied by an increase in neuroinflammation and microgliosis as well as the production of pro-inflammatory markers, which were exacerbated in Cx3cr1-/- mice overexpressing α-SYNA53T . Furthermore, we observed that in primary microglia CX3CR1 was a critical factor in the modulation of microglial dynamics in response to α-SYNWT or α-SYNA53T . Altogether, our study reveals that CX3CR1 plays an essential role in neuroinflammation induced by α-SYNA53T .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app