Add like
Add dislike
Add to saved papers

Inhibition of microRNA-429 attenuates oxygen-glucose deprivation/reoxygenation-induced neuronal injury by promoting expression of GATA-binding protein 4.

Neuroreport 2018 June 14
MicroRNAs (miRNAs) have been documented as critical regulators in ischemia/reperfusion-induced neuronal death. A better understanding of miRNA-mediated molecular mechanisms in ischemia/reperfusion-induced neuronal death may provide therapeutic targets for cerebral ischemia/reperfusion injury. A growing body of evidence suggests that miR-429 is a apoptosis-related miRNA that is also induced by hypoxia. However, whether miR-429 is involved in regulating neuronal apoptosis during cerebral ischemia/reperfusion injury remains unclear. In this study, the effect of miR-429 on oxygen-glucose deprivation and reoxygenation (OGD/R)-induced neuronal injury was investigated in vitro. The results showed that miR-429 expression levels were upregulated in cultured neurons with OGD/R treatment. The downregulation of miR-429 significantly alleviated OGD/R-induced neuronal injury, whereas upregulation of miR-429 aggravated it. Bioinformatic analysis showed that miR-429 could directly target the 3'-untranslated region of GATA-binding protein 4 (GATA4), which was verified by dual-luciferase reporter assay. Moreover, we found that miR-429 negatively regulated GATA4 expression. Overexpression of GATA4 also significantly alleviated OGD/R-induced neuronal injury. However, knockdown of GATA4 partially reversed the protective effect induced by miR-429 downregulation. Overall, our data showed that downregulation of miR-429 protected neurons against OGD/R-induced injury by promoting GATA4 and suggested a potential therapeutic target for the treatment of cerebral ischemia/reperfusion injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app