Add like
Add dislike
Add to saved papers

TiO 2 Nanolayer-Enhanced Fluorescence for Simultaneous Multiplex Mycotoxin Detection by Aptamer Microarrays on a Porous Silicon Surface.

A new aptamer microarray method on the TiO2 -porous silicon (PSi) surface was developed to simultaneously screen multiplex mycotoxins. The TiO2 nanolayer on the surface of PSi can enhance the fluorescence intensity 14 times than that of the thermally oxidized PSi. The aptamer fluorescence signal recovery principle was performed on the TiO2 -PSi surface by hybridization duplex strand DNA from the mycotoxin aptamer and antiaptamer, respectively, labeled with fluorescence dye and quencher. The aptamer microarray can simultaneously screen for multiplex mycotoxins with a dynamic linear detection range of 0.1-10 ng/mL for ochratoxin A (OTA), 0.01-10 ng/mL for aflatoxins B1 (AFB1 ), and 0.001-10 ng/mL for fumonisin B1 (FB1 ) and limits of detection of 15.4, 1.48, and 0.21 pg/mL for OTA, AFB1 , and FB1 , respectively. The newly developed method shows good specificity and recovery rates. This method can provide a simple, sensitive, and cost-efficient platform for simultaneous screening of multiplex mycotoxins and can be easily expanded to the other aptamer-based protocol.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app