Add like
Add dislike
Add to saved papers

Methionine residues lining the substrate pathway in prolyl oligopeptidase from Pleurotus eryngii play an important role in substrate recognition.

Family S9 prolyl oligopeptidases (POPs) are of interest as pharmacological targets. We recently found that an S9 POP from Pleurotus eryngii showed altered substrate specificity following H2 O2 treatment. Oxidation of Met203 on the non-catalytic β-propeller domain resulted in decreased activity toward non-aromatic aminoacyl-para-nitroanilides (pNAs) while maintaining its activity toward aromatic aminoacyl-pNAs. Given that the other Met residues should also be oxidized by H2 O2 treatment, we constructed mutants in which all the Met residues were substituted with other amino acids. Analysis of the mutants showed that Met570 in the catalytic domain is another potent residue for the altered substrate specificity following oxidation. Met203 and Met570 lie on the surfaces of two different domains and form part of a funnel from the surface to the active center. Our findings indicate that the funnel forms the substrate pathway and plays a role in substrate recognition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app