Add like
Add dislike
Add to saved papers

Optimization for Peptide Sample Preparation for Urine Peptidomics.

Analysis of native or endogenous peptides in biofluids can provide valuable insight into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for noninvasive monitoring of human diseases. The noninvasive nature of urine collection and the abundance of peptides in the urine make analysis by high-throughput "peptidomics" methods an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regard to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements, in that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS-based peptidome analysis. We report on a novel adaptation of the standard solid-phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS-based peptidomics, in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. The mSPE method provides significantly improved efficiencies for the preparation of samples from urine. The mSPE method is found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis, due to optimized sample cleanup that provides improved experimental inference from confidently identified peptides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app