Journal Article
Observational Study
Add like
Add dislike
Add to saved papers

Event-based analysis of visual field change can miss fast glaucoma progression detected by a combined structure and function index.

PURPOSE: To investigate the relationship between progression assessed by the visual field guided progression analysis (GPA) and rates of structural and functional change in glaucoma eyes.

METHODS: This was a longitudinal observational study of 135 eyes of 97 patients with glaucoma followed for an average of 3.5 ± 0.9 years. All patients had standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) analysis with spectral domain optical coherence tomography (SDOCT), with an average of 6.8 ± 2.3 visits. A control group of healthy eyes followed longitudinally was used to estimate age-related change. Visual field progression was assessed using the Humphrey Field Analyzer GPA. Estimates of retinal ganglion cell counts from SAP and SDOCT were used to obtain a combined index of glaucomatous damage (RGC index) according to a previously described algorithm. Progression by SDOCT and the retinal ganglion cell (RGC) index were defined as statistically significant (P < 0.05) slopes of change that were also faster than age-related change estimated from healthy eyes.

RESULTS: From the 135 eyes, 15 (11%) progressed by GPA, 21 (16%) progressed by SDOCT, and 31 (23%) progressed by the RGC index. Twenty-one eyes showed progression by the RGC index that was missed by the GPA. These eyes had an average rate of change in estimated RGC counts of - 28,910 cells/year, ranging from two to nine times faster than expected age-related losses.

CONCLUSION: Many glaucomatous eyes that are not found to be progressing by GPA may actually have fast rates of change as detected by a combined index of structure and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app