Add like
Add dislike
Add to saved papers

Regulatory phosphorylation of poly-γ-glutamic acid with phosphate salts in the culture of Bacillus subtilis (natto).

Poly-γ-glutamic acid (PGA) was easily phosphorylated by direct addition of phosphorylating agents into the culture medium of Bacillus subtilis (natto). Tetrapolyphosphate salt was the most incorporated into PGA molecules of all used reagents. Phosphorylation occurred at the α-carboxyl side chains of PGA molecule. The amounts of bound phosphate to PGA were dependent on the amounts of added phosphorylating agent. In low molecular weight regions of less than 100 kDa, a cross-linked peak was observed in the phosphorylated PGAs, whereas their peaks at approximately 1000 kDa shifted to a higher molecular weight due to the bound phosphate. The PGA derivatives had a wide range in viscosity up to 15/1000 to 15 times when compared to the native PGA, depending on the degree of phosphorylation (DP) in the PGA derivatives. The PGA with low DP had a high viscosity due to the unfolding conformation whereas highly phosphorylated PGA had aggregation with low viscosity. Heat treatment at 80 °C after the addition of phosphate salt elicited a novel collagen-like helix structure. These observations show that phosphorylation is an effective way to diversify the physicochemical properties of PGA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app