JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation?

To date, little work has focused on whether cognitive-task interference during postural response execution is influenced by the direction and/or magnitude of the perturbation applied. Hypothetically, the increased difficulty associated with a backward loss of balance could necessitate increased allocation of cognitive resources to counteract destabilizing forces. The current study investigated these relationships using a paradigm in which individuals performed a cognitive task (auditory Stroop task during quiet stance; baseline condition). In certain trials, a translation of the support surface was concurrently evoked (magnitude: small or large; direction: forward or backward) which required a postural response to maintain balance. Ten healthy young adults completed four blocks of these experimental trials (26 randomized trials/block). Postural stability during balance recovery was evaluated using the margin of stability (MoS), while Stroop task performance was based on reaction time cost (RTC) and differences between experimental conditions. Results showed no effect of perturbation direction on RTC, but there was an observed MoS increase at peak extrapolated center of mass excursion following a small perturbation evoked concurrently with the cognitive task. No effect of cognitive-task performance was detected for MoS during stepping strategies (followed large perturbations). Instead, increased RTC were observed relative to the fixed base of support responses. In general, young adults adopted a "posture-first" strategy, regardless of perturbation direction, reinforcing the importance of cognition in the maintenance of upright balance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app