Add like
Add dislike
Add to saved papers

Calcium-induced structural rearrangements release autoinhibition in the Rap-GEF CalDAG-GEFI.

Platelets are recruited to sites of vascular injury, where they are activated and aggregate to form a hemostatic plug. This process requires the activation of the small GTPase Rap1B by its cognate guanine nucleotide exchange factor CalDAG-GEFI. Studies on platelet function suggest that CalDAG-GEFI activity is regulated by changes in cytosolic calcium, but the exact molecular mechanism is poorly understood. Here we show that purified CalDAG-GEFI is autoinhibited and directly regulated by calcium. Substitutions of putative calcium-binding residues within the canonical EF hands of CalDAG-GEFI diminish its capacity to activate Rap1B. Structural differences between active (WT) and inactive (EF hand variant) CalDAG-GEFI protein were determined by hydrogen-deuterium exchange MS. The highest differential rates of deuterium uptake in WT over EF hand variant CalDAG-GEFI were observed in regions within the catalytic Cdc25 domain and a putative autoinhibitory linker connecting the Cdc25 and EF hand domains. Exchange activity in the EF hand variant was fully restored by an additional substitution, valine 406 to glutamate, which is thought to disrupt the interface between the autoinhibitory linker and the Cdc25 domain. Overall, our results suggest a model for how CalDAG-GEFI remains in an autoinhibited state when levels of cytosolic calcium in resting platelets are low. In response to cellular stimulation, calcium mobilization and binding to the EF hands causes conformational rearrangements within CalDAG-GEFI, including the autoinhibitory linker that frees the catalytic surface of CalDAG-GEFI to engage and activate Rap1B. The data from this study are the first evidence linking CalDAG-GEFI activity directly to calcium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app