Add like
Add dislike
Add to saved papers

Effective suppression of tumour cells by oligoclonal HER2-targeted delivery of liposomal doxorubicin.

Synergistic effect of combined antibodies targeting distinct epitopes of a particular tumour antigen has encouraged some clinical trial studies and is now considered as an effective platform for cancer therapy. Providing several advantages over conventional antibodies, variable domain of heavy chain of heavy chain antibodies (VH H) is now major tools in diagnostic and therapeutic applications. Active targeting of liposomal drugs is a promising strategy, resulting in enhanced binding and improved cytotoxicity of tumour cells. In the present study, we produced four anti-HER2 recombinant VHHs and purified them via native and refolding method. ELISA and flow cytometry analysis confirmed almost identical function of VHHs in refolded and native states. Using a mixture of four purified VHHs, PEGylated liposomal doxorubicin was targeted against HER2-overexpressing cells. The drug release was analyzed at pH 7.4, 6.4 and 5.5 and dynamic light-scattering detector and TEM micrograph was applied to characterize the produced nanoparticles. The binding efficiency of these nanoparticles to BT474 and SKBR3 as HER2-positive and MCF10A as HER2-negative cell line was examined by flow cytometry. Our results indicated effective encapsulation of about 94% of the total drug in immunoliposomes. Flow cytometry results verified receptor-specific binding of targeted liposomes to SKBR3 and BT474 cell lines and more efficient binding was observed for liposomes conjugated with oligoclonal VHHs mixture compared with monoclonal VHH-targeted liposomes. Oligoclonal nanoparticles also showed more cytotoxicity compared with non-targeted liposomes against HER2-positive tumour cells. Oligoclonal targeting of liposomes was represented as a promising strategy for the treatment of HER2-overexpressing breast cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app