Add like
Add dislike
Add to saved papers

Up-Regulation of PI 3-Kinases and the Activation of PI3K-Akt Signaling Pathway in Cancer Stem-Like Cells Through DNA Hypomethylation Mediated by the Cancer Microenvironment.

Previously, we have succeeded in converting induced pluripotent stem cells (iPSCs) into cancer stem cells (CSCs) by treating the iPSCs with conditioned medium of Lewis lung carcinoma (LLC) cells. The converted CSCs, named miPS-LLCcm cells, exhibited the self-renewal, differentiation potential, and potential to form malignant tumors with metastasis. In this study, we further characterized miPS-LLCcm cells both in vivo and in vitro. The tumors formed by subcutaneous injection showed the structures with pathophysiological features consisting of undifferentiated and malignant phenotypes generally found in adenocarcinoma. Metastasis in the lung was also observed as nodule structures. Excising from the tumors, primary cultured cells from the tumor and the nodule showed self-renewal, differentiation potential as well as tumor forming ability, which are the essential characters of CSCs. We then characterized the epigenetic regulation occurring in the CSCs. By comparing the DNA methylation level of CG rich regions, the differentially methylated regions (DMRs) were evaluated in all stages of CSCs when compared with the parental iPSCs. In DMRs, hypomethylation was found superior to hypermethylation in the miPS-LLCcm cells and its derivatives. The hypo- and hypermethylated genes were used to nominate KEGG pathways related with CSC. As a result, several categories were defined in the KEGG pathways from which most related with cancers, significant and high expression of components was PI3K-AKT signaling pathway. Simultaneously, the AKT activation was also confirmed in the CSCs. The PI3K-Akt signaling pathway should be an important pathway for the CSCs established by the treatment with conditioned medium of LLC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app