Add like
Add dislike
Add to saved papers

Metabolic changes in urine and serum during progression of diabetic kidney disease in a mouse model.

Diabetic kidney disease (DKD) involves various pathogenic processes during progression to end stage renal disease, and activated metabolic pathways might be changing based on major pathophysiologic mechanisms as DKD progresses. In this study, nuclear magnetic resonance spectroscopy (NMR)-based metabolic profiling was performed in db/db mice to suggest potential biomarkers for early detection and its progression. We compared concentrations of serum and urinary metabolites between db/m and db/db mice at 8 or 20 weeks of age and investigated whether changes between 8 and 20 weeks in each group were significant. The metabolic profiles demonstrated significantly increased urine levels of glucose and tricarboxylic acid cycle intermediates at both 8 and 20 weeks of age in db/db mice. These intermediates also exhibited strong positive associations with urinary albumin excretion, suggesting that they may be potential biomarkers for early diagnosis. On the contrary, branched chain amino acid and homocysteine-methionine metabolism were activated early in the disease, whereas ketone and fatty acid metabolism were significantly changed in the late phase of the disease. We demonstrated phase-specific alterations in metabolites during progression of DKD. This study provides insights into perturbed mechanisms during evolution of the disease and identifies potential novel biomarkers for DKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app