Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cerebral Multimodal Monitoring in Sepsis: An Experimental Study.

Shock 2019 Februrary
Acute brain dysfunction is a complication of sepsis, and its pathophysiology remains poorly understood. We studied the brain metabolism in a resuscitated animal model of sepsis. Twelve anesthetized, mechanically ventilated, and invasively monitored pigs were allocated to a sham procedure (N = 5) or sepsis (N = 7). Sepsis was induced through fecal inoculation in the peritoneum. Fluid resuscitation was maintained during the entire study period. Animals were observed until spontaneous death or for a maximum of 24 h. In addition to global hemodynamic and laboratory assessment, intracranial pressure and cerebral microdialysis (MD) were evaluated at baseline, 6, 12, 18, and 24 h after sepsis induction. After euthanasia, the brain was rapidly removed and a fragment from the frontal cortex was analyzed for markers of neuroinflammation, metabolism, and neurotransmission. Septic animals developed a hyperdynamic state associated with increased arterial lactate. Cerebral microdialysis showed unchanged levels of lactate/pyruvate ratios and brain glucose between the groups. Brain/serum glucose ratios were increased in the septic animals during the study period despite a progressive decrease in serum glucose. Moreover, extracellular glutamine levels were elevated starting at 6 h after sepsis. Tissue analysis showed elevated glutamate, glutamine, and glutamine synthetase in the sepsis group. However, C-Fos, a marker of neuronal activity, was unchanged between groups. In this animal model of resuscitated sepsis, we found increased oxidative stress and alterations in neuroenergetics characterized by exacerbated activity of the glutamate/glutamine cycle and increased glucose utilization by the brain, however without any evidence of decompensated energy metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app