Add like
Add dislike
Add to saved papers

Histone deacetylase inhibitors alter the expression of molecular markers in breast cancer cells via microRNAs.

Histone deacetylase inhibitors (HDACis) are able to suppress breast cancer cells in vitro and in vivo by altering the expression of estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor receptor 2 (Her2/neu). Since HDACis can alter the expression of various microRNAs (miRNAs/miRs), the present study aimed to examine the role of miRNAs in the effects of HDACis on breast cancer cells. We first examined the mRNA expression of ER, PR, and Her2/neu using RT-PCR and the protein levels of ER, PR, and Her2/neu using western blot analysis in MDA-MB-231 and BT474 cells, after trichostatin A (TSA) or vorinostat (SAHA) treatment. We then conducted miRNA expression profiling using microarrays after BT474 cells were treated with TSA or SAHA. Finally, we examined the effects of synthetic miR-762 and miR-642a-3p inhibitors on SAHA-induced downregulation of Her2/neu and SAHA-induced apoptosis and PARP cleavage in BT474 cells. The results indicated that TSA and SAHA dose‑dependently enhanced the mRNA and protein expression levels of ER and PR in MDA‑MB‑231 and BT474 cells. In addition, the mRNA expression levels of Her2/neu were reduced in MDA‑MB‑231 cells, and the mRNA and protein expression levels of Her2/neu were reduced in BT474 cells in response to SAHA and TSA. Furthermore, treatment with TSA (0.2 µM) or SAHA (5.0 µM) induced a marked alteration in the expression of various miRNAs in BT474 cells. Notably, when cells were cotransfected with miR‑762 and miR‑642a‑3p inhibitors, SAHA‑induced downregulation of Her2/neu was inhibited, and SAHA‑induced apoptosis and poly (ADP‑ribose) polymerase cleavage were significantly reduced in BT474 cells. These results indicated that numerous HDACi‑induced miRNAs are required to downregulate Her2/neu levels and promote apoptosis of Her2‑overexpressing breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app